ChatGPT показал худший результат по торговле криптовалютой, потеряв 60% депозита Результаты исследования показали, что большинство приложений искусственного интеллекта торгует криптовалютой, теряя средства на коротком отрезке времени
«РБК-Крипто» не дает инвестиционных советов, материал опубликован исключительно в ознакомительных целях. Криптовалюта — это волатильный актив, который может привести к финансовым убыткам.
В октябре лаборатория Nof1 запустила эксперимент Alpha Arena для шести популярных языковых моделей (LLM), соревнующихся в криптотрейдинге, пишет Protos со ссылкой на отчет. ChatGPT от компании OpenAI, Gemini от Google, Grok от X, Claude Sonnet от Anthropic, DeepSeek от High-Flyer и QWEN3 от Alibaba — все они получили одинаковые настройки и по $10 тыс. реальных денег на криптобирже Hyperliquid.
В результате около двухнедельного соревнования четыре из шести завершили его с убытками до 60%. Двумя победителями стали DeepSeek и QWEN3, которые завершили торговлю с прибылью $489 и $2232 соответственно. ChatGPT потерял $6267, Gemini — $5671, Grok — $4531, а Claude Sonnet — $3081.
rbc.group
LLM — это большие языковые модели (Large Language Models), тип ИИ, который обучается на огромных объемах текстовых данных для понимания и генерации человеческого языка. Эти модели способны выполнять множество задач, таких как написание текстов, перевод, создание кода и многое другое.
Главной задачей LLM было добиться максимальной доходности с учетом риска. Модели самостоятельно принимали решения о сделках, их размере, времени входа и управлении риском. Все действия и результаты публиковались в открытом доступе в онлайн-режиме.
Все модели получили одни и те же промпты и рыночные данные — ценовые ряды, индикаторы EMA, MACD, RSI, объемы, ставки финансирования и открытый интерес. Данные подавались с интервалом три минуты, торги велись на платформе Hyperliquid шестью монетами — биткоин (BTC), Ethereum (ETH), Solana (SOL), BNB (BNB), Dogecoin (DOGE) и XRP (XRP).
Что такое Hyperliquid. Как устроена платформа и чем объясняется ее рост
Grok, ChatGPT и Gemini были более склонны к коротким позициям, чем другие, в то время как Claude Sonnet реже всех открывал короткие позиции. Gemini совершила в общей сложности 238 сделок (больше всех), в то время как Claude Sonnet провела только 38 (меньше всех).
«Процент выигрышных сделок» для всех шести LLM варьировался в диапазоне от 25 до 30%. QWEN3 MAX заплатила больше всех комиссионных — в общей сложности $1654. Gemini также заплатила $1331 в виде комиссий.
Nof1 отметила, что «финансовый результат по большей степени определялся торговыми издержками, так как агенты слишком активно торговали и фиксировали быстрые, небольшие прибыли, которые стирались за счет комиссий».
27 октября LLM показали наилучшие для себя результаты. На этот момент QWEN3 MAX и DeepSeek смогли удвоить депозиты, Claude и Groк также ненадолго вышли в прибыль. Однако ChatGPT и Gemini находились в убытке на протяжении практически всего соревнования.
Основатель Nof1 Джей Ажанг запустил это соревнование с целью когда-нибудь создать собственную модель ИИ для торговли криптовалютой. Однако на данном этапе результаты остаются далеки от идеальных. Nof1 сообщает, что после улучшений и доработки условий для ИИ соревнования продолжатся.
«Мы работали над тем, чтобы дать моделям шанс проявить себя в равных условиях, но среда накладывает реальные ограничения. Каждый агент должен анализировать сложные рыночные данные, соотносить их с текущим состоянием счета, мыслить в рамках строгих правил и действовать структурно — и все это в ограниченных условиях», — сообщается по результатам соревнования.
Телеграм-канал «РБК-Крипто» — подпишитесь и будьте в курсе самых главных и актуальных новостей о криптовалюте.
Присоединяйтесь к форуму «РБК-Крипто» в Telegram для обсуждения новостей и тенденций криптомира.
Одним из главных препятствий к достижению успеха в трейдинге криптовалютой считается неустойчивый эмоциональный фон трейдера, который часто мешает принимать взвешенные решения. Участники рынка концентрируют огромные усилия, чтобы снизить влияние эмоций, — однако лишенные этой составляющей ИИ-модели пока не показали отличных результатов.
Интерес к экспериментам, где торгует ИИ с низкой долей участия оператора или без него, появился практически сразу. Так, например, с конца 2024 года на рынке создаются автоматизированные ИИ-фонды, где средствами управляют ИИ-агенты на основе опыта своих вкладчиков.
Размер одного из таких фондов ai16z, использующего пародийное название реального фонда a16z, в моменте превысил $100 млн по капитализации. Вскоре проект провел ребрендинг и был переименован в ElizaOS по просьбе компании.
На 6 ноября размер этого фонда превышает $60 млн. Тем не менее, проект за год существования не смог трансформироваться в конечный продукт, а с падением курса его токена остался частью недолгого спекулятивного рыночного нарратива.
Чего не хватает биткоину для роста. Главное из отчета Wintermute
«Рынок по-прежнему уязвим». Что будет с биткоином в ближайшую неделю
Почему октябрь 2025 года стал для биткоина самым успешным и провальным
Авторы Теги Олег Гордышев
Источник: www.rbc.ru